Efficient Downlink Channel Probing and Uplink Feedback in FDD Massive MIMO Systems
نویسندگان
چکیده
Massive Multiple-Input Multiple-Output (massive MIMO) is a variant of multi-user MIMO in which the number of antennas at each Base Station (BS) is very large and typically much larger than the number of users simultaneously served. Massive MIMO can be implemented with Time Division Duplexing (TDD) or Frequency Division Duplexing (FDD) operation. FDD massive MIMO systems are particularly desirable due to their implementation in current wireless networks and their efficiency in situations with symmetric traffic and delay-sensitive applications. However, implementing FDD massive MIMO systems is known to be challenging since it imposes a large feedback overhead in the Uplink (UL) to obtain channel state information for the Downlink (DL). In recent years, a considerable amount of research is dedicated to developing methods to reduce the feedback overhead in such systems. These studies focus on exploiting underlying channel structure such as low-rankness or sparsity in time, frequency, and space domains. In this paper, we use the sparse spatial scattering properties of the environment to achieve this goal. The idea is to estimate the support of the continuous, frequency-invariant scattering function from UL channel observations and use this estimate to obtain the support of the DL channel vector via appropriate interpolation. We use the resulting support estimate to design an efficient DL probing and UL feedback scheme in which the feedback dimension scales proportionally with the sparsity order of DL channel vectors. Since the sparsity order is much less than the number of BS antennas in almost all practically relevant scenarios, our method incurs much less feedback overhead compared with the currently proposed methods in the literature, such as those based on compressed-sensing. We use numerical simulations to assess the performance of our probing-feedback algorithm and compare it with these methods. The authors are with the Communications and Information Theory Group, Technische Universität Berlin ({m.barzegarkhalilsarai, saeid.haghighatshoar, caire}@tu-berlin.de). ar X iv :1 70 8. 04 44 4v 1 [ cs .I T ] 1 5 A ug 2 01 7
منابع مشابه
Dictionary Learning Based Sparse Channel Representation and Estimation for FDD Massive MIMO Systems
Downlink beamforming in FDD Massive MIMO systems is challenging due to the large training and feedback overhead, which is proportional to the number of antennas deployed at the base station, incurred by traditional downlink channel estimation techniques. Leveraging the compressive sensing framework, compressed channel estimation algorithm has been applied to obtain accurate channel estimation w...
متن کاملChannel Estimation for TDD/FDD Massive MIMO Systems with Channel Covariance Computing
In this paper, we propose a new channel estimation scheme for TDD/FDD massive MIMO systems by reconstructing uplink/downlink channel covariance matrices (CCMs) with the aid of array signal processing techniques. Specifically, the angle information and power angular spectrum (PAS) of each multi-path channel is extracted from the instantaneous uplink channel state information (CSI). Then, the upl...
متن کاملFDD Massive MIMO: Efficient Downlink Probing and Uplink Feedback via Active Channel Sparsification
In this paper, we propose a novel method for efficient implementation of a massive Multiple-Input MultipleOutput (massive MIMO) system with Frequency Division Duplexing (FDD) operation. Our main objective is to reduce the large overhead incurred by Downlink (DL) common training and Uplink (UL) feedback needed to obtain channel state information (CSI) at the base station. Our proposed scheme rel...
متن کاملA Graph Theoretic Approach for Training Overhead Reduction in FDD Massive MIMO Systems
The overheads associated with feedback-based channel acquisition can greatly compromise the achievable rates of FDD based massive MIMO systems. Indeed, downlink (DL) training and uplink (UL) feedback overheads scale linearly with the number of base station (BS) antennas, in sharp contrast to TDDbased massive MIMO, where a single UL pilot trains the whole BS array. In this work, we propose a gra...
متن کاملDesign and Analysis of Downlink Channel Estimation Based on Parametric Model for Massive MIMO in FDD Systems
This paper investigates downlink channel estimation in frequency-division duplex (FDD)-based massive multiple-input multiple-output (MIMO) systems. To reduce the overhead of downlink channel estimation and uplink feedback in FDD systems, cascaded precoding has been used in massive MIMO such that only a low-dimensional effective channel needs to be estimated and fed back. On the other hand, trad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.04444 شماره
صفحات -
تاریخ انتشار 2017